FIVE NEW PREGNANE GLYCOSIDES FROM CYNANCHUM TAIWANIANUM

YUN-LIAN LIN,* TUNG-CHIEH LIN,

National Research Institute of Chinese Medicine, Taipei Hsien, Taiwan, Republic of China

and YUEH-HSIUNG KUO

Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

ABSTRACT.—Five new pregnane glycosides, taiwanosides A [1], B [2], C [3], D [4], and E [5], together with wilfosides C1N [6], C2N [7], M1N [8], and K1N [9], were isolated from the roots of *Cynanchum taiwanianum*. Their structures were determined on the basis of spectroscopic and chemical evidence.

Species of the genus *Cynanchum* (Asclepiadaceae) have been studied extensively for their bioactive C/D-*cis*-polyoxypregnane glycoside constituents (1–19). The roots of *Cynanchum taiwanianum* Yamazaki have been used as a folk medicine for treating tumors in Taiwan. Chen *et al.* reported the isolation of flavones, β -amyrin, α -amyrin acetate, and taraxerol from the aerial parts of this plant (20). In connection with our interest in bioactive pregnane-type steroidal glycosides, chemical studies on the roots of this plant were undertaken. In this paper we describe the isolation and structural elucidation of five new glycosides, taiwanosides A [1], B [2], C [3], D [4], and E [5], together with four known pregnane glycosides, wilfosides C1N [6] (11), C2N [7] (11), M1N [8] (12), and K1N [9] (12).

RESULTS AND DISCUSSION

The EtOAc-soluble material from an EtOH extract of *C. taiwanianum* was chromatographed on Si gel to obtain a fraction rich in steroidal glycosides. Further

Carbon	Compound							
	1	2	3	4	5	10		
1	39.3	39.3	39.2	39.5	39.6	38.8		
2	29.9	29.9	29.7	29.9	29.9	31.9		
	(-2.0) ^b	(-2.0) ^b	(−2.2) ^b	(−2.0) ^b	(−0.6) ^b			
3	77.77	77.7	77.7	77.7	77.8	71.6		
	(+6.1) [▶]	(+6.1) ^b	(+6.1) ^b	(+6.1) [♭]	(+6.1) ^b	(
4	38.9	38.9	38.9	39.0	39.0	43.0		
	$(-4.1)^{b}$	$(-4.1)^{b}$	$(-4.1)^{b}$	$(-4.5)^{b}$	$(-4.5)^{b}$			
5	139.4	139.4	139.3	139.5	139.4	140.1		
6	119.1	119.1	119.0	119.1	119.4	118.4		
7	33.7°	33.7°	33.8°	33.1°	32.8°	33.8°		
8	74.4	74.4	74.5	74.4	74.3	74.1		
9	44.5	44.5	44.4	44.6	44.9	44.2		
10	37.4	37.4	37.3	37.4	37.4	37.0		
11	24.8	24.8	24.7	25.1	29.4	25.0		
12	73.6	73.5	73.9	73.6	68.9	73.0		
13	57.9	57.9	58.3	58.1	60.4	57.6		
14	89.4	89.4	89.3	89.5	89.3	89.1		
15	34.7°	34.7°	34.6°	34.8°	35.1°	34.4		
16	32.8°	32.8 ^c	32.7	32.2°	32.4°	34.4°		
17	92.4	92.4	92.3	92.4	92.5	92.1		
18	10.4	10.4	10.3	10.7	9.4	10.1		
19	18.6	18.2	18.4	18.4	18.6	18.0		
20	210.1	210.1	210.9	209.9	209.6	209.9		
21	27.6	27.6	27.5	27.7	27.9	27.0		
1'	169.9	169.7	169.7	135.0		169.6		
2'	20.8	20.8	20.7	128.9		20.6		
3'				129.3				
4'				130.6				
5'				129.3				
6'				128.9				
7'				144.9				
8'				119.2				
9'				165.8				

TABLE 1. ¹³C-Nmr Chemical Shifts for the Aglycone Moieties of 1-5 and 10.⁴

^aMeasured at 75 MHz in C_5D_5N with TMS as internal standard.

^bValues in parentheses represent glycosidation shifts.

'Indicated assignments in each column may be interchangeable.

separation of the constituents of this fraction by mplc on RP-18 led to the isolation of five new glycosides, taiwanosides A [1], B [2], C [3], D [4], and E [5], together with four known glycosides, wilfosides C1N, [6], C2N [7], M1N [8], and K1N [9]. The known compounds were identified by comparison of their physical and spectroscopic data with reported values (11,12). The new glycosides showed positive Liebermann-Burchard and Keller-Kiliani (21) reactions, which indicated the presence of steroidal glycosides with 2-deoxy sugars. Glycosidation shifts (22,23) were observed at C-2, C-3, and C-4 in each compound (Table 1), indicating that the sugar moiety in all cases is linked to the hydroxyl group at C-3. Among these new glycosides, 1–3 have the same aglycone, as indicated by their ¹H- and ¹³C-nmr data (Table 1), and compounds **2**, **4**, and **5** have the same sugar chain as evidenced by their ¹H-, ¹³C- (Table 2), nOe, and HMBC nmr data.

Taiwanoside A [1], isolated as white needles, mp 154–156°, $[\alpha]D - 46.2^{\circ}$ (c=0.5, CHCl₃), has the molecular formula C₄₃H₆₈O₁₆ on the basis of fabms and elemental

	Compound					
Carbon	1	2	3	4	5	
D-Cym 1			96.1 35.2 77.6 ^h 82.2 69.1			
6 3-OCH ₃ D-Digito 1 2 3	96.4 39.3 68.7	96.4 39.0 68.7	18.7 57.2 ^f	96.5 39.1 68.9	96.4 39.0 68.7	
4 5 6 L-Dig 1	82.6 67.9 ^e 18.8 ^d 100.8	82.6 ⁸ 67.9 ^e 18.6 ^d 100.8	100.8	82.7 ^g 67.6 ^c 18.7 ^d 100.9	82.6 ⁸ 67.9 ^e 18.7 ^d 100.8	
2 3 4 5 6	32.5 ^b 74.0 ^c 74.3 ^c 67.6 ^e 17.8 ^d	32.4 ^b 73.9 ^c 74.3 ^c 67.5 ^c 17.8 ^d	32.4 ^b 73.9 ^c 74.5 ^c 67.4 17.8 ^d	32.3 ^b 74.4 ^c 74.1 ^c 67.6 ^e 18.3 ^d	32.1 ^b 73.9 ^c 74.4 ^c 67.5 ^e 17.8 ^d	
3-OCH ₃ D-Cym 1 3 4	55.1 ^f 99.5 36.3 78.9 74.2 ^c	55.2 ^f 99.4 36.3 77.8 82.3 ^g	55.3 ^f 99.4 36.3 77.7 ^h 82.2	55.3 ^f 99.5 36.4 77.9 82 4 ^g	55.2 ^f 99.4 36.3 77.7 82.3 ^g	
5 6 3-OCH ₃	71.0 18.2 ^d 57.9 ^f	69.4 18.4 ^d 58.3 ^f	69.3 18.5 ^d 58.3 ^f	69.5 17.9 ^d 58.3 ^f	69.4 18.4 ^d 58.3 ^f	
2 3 4 5 6 3-OCH ₃		32.1 ^b 76.4 73.2 ^c 66.5 18.7 ^d 56.5 ^f	32.0 ^b 76.3 73.1 ^c 66.3 18.1 ^d 56.5 ^f	32.5 ^b 76.5 73.3 ^c 66.6 18.7 ^d 56.7 ^f	32.1 ^b 76.4 73.2 ^c 66.4 18.6 ^d 56.6 ^f	

TABLE 2. ¹³C-Nmr Chemical Shifts for Sugar Moieties of 1-5.^{*}

*Measured at 75 MHz in C₅D₅N with TMS as an internal standard. D-Cym: β-D-cymaropyranosyl; Ddigito: β-D-digitoxopyranosyl; L-Cym: α-L-cymaropyranosyl; L-dig: α-L-diginopyranosyl. ^{b-h}Indicated assignments in each column may be interchangeable.

analysis and its ir spectrum showed hydroxyl (3400 cm^{-1}), carbonyl (1710 cm^{-1}), ester ($1720 \text{ and } 1220 \text{ cm}^{-1}$), and olefinic ($3030 \text{ and } 1630 \text{ cm}^{-1}$) group absorptions. The ¹H-nmr spectrum of **1** exhibited four methyl groups [δ 1.10, 1.40, 1.92, 2.22 (3H each, s, Me-19 and Me-18, AcO-12, Me-21)] and one olefinic proton [δ 5.33 (1H, br s, H-6)] in its aglycone moiety, and three secondary methyl groups [δ 1.22, 1.24, 1.28 (3H each, d, J=6.0 Hz)], together with two methoxyl signals [δ 3.38 (6H, s)] in its sugar moiety. One α - linkage and two β - linkages of sugars were revealed by the coupling constants of the anomeric proton signals at δ 4.66 (1H, dd, J=8.3 and 3.0 Hz), 4.92 (1H, dd, J=9.6 and 2.3 Hz), and 5.03 (1H, d, J=3.0 Hz). Mild acidic hydrolysis of **1** afforded a mixture of sugars and the aglycone **10**, which was identical with metaplexigenin (24-26). The ¹³C-nmr data (Table 1) of **10** further confirmed the assigned structure. The ¹H-and ¹³C-nmr data (Table 2) indicated that the three monosaccharides obtained were β -D-digitoxopyranose, α -L-diginopyranose, and β -D-cymaropyranose in taiwanoside A

[1]. The sugar sequence of 1 was suggested by nOe difference spectra and heteronuclearcorrelated 2D nmr spectral (HMBC) data. Irradiation at δ 4.66 (H-1 of β -Dcymaropyranose) caused enhancements at δ 3.80 (1H, dq, J=9.0 and 6.2 Hz, H-5 of β -D-cymaropyranose) and δ 3.86 (1H, br s, H-4 of α -L-diginopyranose), which indicated that the cymarose was β -linked to diginose. Irradiation at δ 4.92 (1H, dd, J=9.6 and 2.3 Hz, H-1 of digitoxopyranose) caused nOes at δ 3.82 (1H, m, H-3) and 3.78 (1H, dq, J=9.3 and 6.2 Hz, H-5 of β -D-digitoxopyranose), which showed that digitoxose was β linked to C-3 of the aglycone, and, based on the HMBC correlations between δ 5.03 (1H, d, I=3.1 Hz, H-1 of α -L-diginopyranose) and δ 82.6 (C-4 of β -D-digitoxopyranose), indicated that the diginose moiety was α -linked to the C-4 hydroxy group of digitoxose. Acetylation of 1 gave triacetate 1a (δ 1.93, 1.96, and 1.98), and its ¹H-nmr spectrum showed a shift of the H-3 signal of β -D-digitoxose from δ 3.58 to 5.29(1H, ddd, J=3.1, 2.8, and 2.8 Hz), and of the H-4 signal of β -D-cymarose from δ 3.26 (1H, dd, J=9.8 and 2.9 Hz) to 4.56 (1H, dd, J=9.8 and 3.0 Hz). Therefore, the structure of taiwanoside A [1] was deduced to be metaplexigenin 3-0- β -D-cymaropyranosyl-(1 \rightarrow 4)- α -Ldiginopyranosyl- $(1 \rightarrow 4)$ - β -D-digitoxopyranoside.

Taiwanoside B [2], colorless needles, mp 156–158°, $[\alpha]D - 73.0^{\circ}$ (c=1.0, CHCl₃), has the molecular formula $C_{50}H_{80}O_{19}$ on the basis of fabms and eims. Its ir spectrum exhibited the presence of hydroxyl (3450 cm⁻¹), olefinic (3030 and 1635 cm⁻¹), carbonyl (1710 cm^{-1}) , and ester $(1730 \text{ and } 1230 \text{ cm}^{-1})$ groups. The ¹H-nmr spectrum of **2** gave signals at δ 1.10 (3H, s, Me-19), 1.40 (3H, s, Me-18), 1.96 (3H, s, AcO-12), 2.28 (3H, s, Me-21), and 5.32 (1H, br s, H-6) in its aglycone moiety, which were very similar to those of **1**. The sugar moiety contained four secondary methyl signals at δ 1.20, 1.21, 1.22, and 1.23 (3H each, d, J=6.3 Hz), three methoxyl methyl signals at δ 3.37, 3.39, and 3.40 (3H each, s), and four anomeric proton signals at δ 4.73 (1H, dd, J=10.2 and 2.1 Hz), 4.75 (1H, d, J=3.1 Hz), 4.90 (1H, dd, J=9.6 and 2.1 Hz), and 5.26 (1H, d, J=3.0 Hz), corresponding to carbon signals at δ 96.4, 99.0, 99.4, and 100.8 (Table 2). This indicated that there were four sugar units in 2 with two α -linkages and two β linkages. The sugar sequence of 2 was also confirmed by nOe observations [irradiation at δ 4.73 (1H, dd, J=10.2 and 2.1 Hz, H-1 of β -D-cymaropyranose) caused enhancement at δ 3.85 (1H, br s, H-4 of α -L-diginopyranose), and irradiation at δ 4.90 (1H, dd, J=9.6 and 2.1 Hz, H-1 of β -D-digitoxopyranose) caused enhancement at δ 3.58 (1H, m, H-3)] and by HMBC nmr correlations [δ 4.75 (1H, d, J=3.1 Hz, H-1 of α -Lcymaropyranose) to δ 82.3 (C-4 of β -D-cymaropyranose), and δ 5.26 (1H, d, J=3.0 Hz, H-1 of α -L-diginopyranose) to δ 82.6 (C-4 of β -D-digitoxoyranose)]. In comparison with the terminal β -D-cymarose of 1 (Table 2), the glycosidation shifts of the β -Dcymaropyranose moiety in 2 were observed at C-3 (-1.1 ppm), C-4 (+8.1 ppm), and C-5 (-1.6 ppm), which indicated that the terminal α -L-cymaropyranose was linked to the C-4 hydroxyl group of β -D-cymaropyranose. Consequently, the structure of **2** was confirmed as metaplexigenin 3-0- α -L-cymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl- $(1\rightarrow 4)-\alpha$ -L-diginopyranosyl- $(1\rightarrow 4)-\beta$ -D-digitoxopyranoside.

Taiwanoside C [3], colorless needles, mp 153–155°, $[\alpha]D - 55.0°$ (c=1.0, CHCl₃), has the molecular formula $C_{51}H_{82}O_{19}$ on the basis of fabms and eims. Its ¹H-nmr spectrum was similar to that of **2**, except that **3** had four methoxyl groups [δ 3.36, 3.37, 3.39, and 3.43 (3H each, s)] instead of three. There were also two α -linkages and two β -linkages of sugars as inferred from the coupling constants of the anomeric proton signals at δ 4.73 (1H, dd, J=9.6 and 2.1 Hz), 4.75 (1H, d, J=3.0 Hz), 4.79 (1H, dd, J=10.5 and 2.1 Hz), 4.95 (1H, d, J=3.0 Hz). Mild alkaline hydrolysis yielded the known compound **8**(12). Therefore, the structure of **3** was established as metaplexigenin 3-0- α -L-cymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- α -L-diginopyranosyl-(1 \rightarrow 4)- β -D-cymaropyanoside. Taiwanoside D [4], colorless needles, mp 162–164°, $[\alpha]D - 57.0^{\circ}$ (c=1.0, CHCl₃), uv λ max (MeOH) (log ϵ) 278 (2.89), 223 (3.81), and 217 (3.84) nm, had a molecular formula of C₅₇H₈₄O₁₉ on the basis of fabms and eims. The ¹H-nmr spectrum of 4 showed a cinnamoyl group at δ 6.28 (1H, d, J=15.9 Hz), 7.36 (3H, m, H-3', H-4', H-5'), 7.49 (2H, m, H-2', H-6'), and 7.59 (1H, d, J=15.9 Hz). Compound 4 had the same sugar chain as 2, as indicated by their ¹³C-nmr (Table 2) spectra obtained with nOe and HMBC experiments. Acid hydrolysis of 4 afforded a product which was identical with kidjoranine [11] (26,27). Based on the above evidence, the structure of 4 was deduced as kidjoranine 3-0- α -L-cymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- α -Ldiginopyranosyl-(1 \rightarrow 4)- β -D-digitoxopyranoside.

The ¹H-nmr spectrum of taiwanoside E [5] gave no evidence for an ester functional group in the aglycone moiety [δ 1.15, 1.19, and 2.26 (3H each, s), 1.17, 1.19, 1.21, and 1.22 (3H each, d, J=6.3 Hz), 3.33, 3.35, and 3.40 (3H each, s), 4.70 (1H, dd, J=9.8 and 2.1 Hz), 4.71 (1H, d, J=3.0 Hz), 4.86 (1H, dd, J=9.3 and 2.1 Hz), 4.78 (1H, d, J=3.0 Hz), 5.28 (1H, br s)]. The ¹³C-nmr data (Table 2) of the sugar moiety were almost the same as those of 2 and 4. Basic hydrolysis of compound 4 yielded compound 5 and cinnamic acid. Mild acidic hydrolysis of 5 yielded deacylmetaplexigenin [12] (26,28). Thus, the structure of 5 was assigned as deacylmetaplexigenin 3-0- α -L-cymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- β -D-digitoxopyranoside.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Mps were determined with Yanagimoto micro-melting point apparatus and are uncorrected. Ir spectra were recorded on a Perkin-Elmer 781 spectrophotometer. Uv spectra were measured on a Hitachi U-3200 spectrophotometer. Optical rotations were measured on a Jasco DIP-370 instrument. Fabms spectra were obtained on a JEOL SX-102A spectrometer. ¹H- and ¹³C-nmr spectra were run on Bruker AC-300 and AMX 400 spectrometers, respectively.

PLANT MATERIAL.—The roots of *Cynanchum taiwanianum* were collected from Cha-Yi, Taiwan, in May 1993. Plant material was identified by Dr. Ih-Sheng Chen, School of Pharmacy, Kaohsiung Medical College, and a voucher specimen has been deposited at the Herbarium of the Department of Botany of National Taiwan University, Taipei, Taiwan.

EXTRACTION AND ISOLATION.—The roots of *C. taiwanianum* (5 kg) were extracted twice with EtOH (30 liters) at ca. 50°. The EtOH extract was evaporated *in vacuo*, yielding a black residue, which was taken up in $H_2O(1 \text{ liter})$. The aqueous solution was partitioned with successively EtOAc and *n*-BuOH. The EtOAc fraction was evaporated to dryness, and repeated separation and purification on Si gel and reversed-phase gel cc afforded nine pregnane oligoglycosides, including five new compounds, taiwanosides A [1] (56 mg), B [2] (275 mg), C [3] (5.895 g), D [4] (187 mg), and E [5] (85 mg), together with four known compounds, wilfosides C1N [6] (985 mg), C2N [7] (270 mg), M1N [8] (482 mg), and K1N [9] (124 mg).

Taiwanoside A [1].—Mp 154°; [α]D -46.2° (c=0.5, CHCl₃); ir (KBr) ν max 3400, 3030, 2935, 2900, 1720, 1710, 1630, 1220, 1065, 1040, 1000 cm⁻¹; ¹H nmr (CDCl₃) δ 1.10 (3H, s, Me-19), 1.22, 1.24, 1.28 (3H each, d, J=6.0 Hz, Me-6 of sugars), 1.40 (3H, s, Me-18), 1.92 (3H, s, AcO-12), 2.22 (3H, s, Me-21), 3.26 (1H, dd, J=9.8 and 2.9 Hz, H-4 of β-D-cymaropyranose), 3.27 (1H, dd, J=9.6 and 3.0 Hz, H-4 of β-D-digitoxopyranose), 3.38 (6H, s, MeO-3 of sugar moiety), 3.78 (1H, dq, J=9.3 and 6.2 Hz, H-5 of β-D-digitoxopyranose), 3.80 (1H, dq, J=9.0 and 6.2 Hz, H-5 of β-D-digitoxopyranose), 3.82 (1H, m, H-3 of aglycone), 3.86 (1H, br s, H-4 of α-L-diginopyranose), 4.66 (1H, dd, J=8.3 and 3.0 Hz, anomeric H), 4.92 (1H, dd, J=9.6 and 2.3 Hz, anomeric H), 5.03 (1H, d, J=3.1 Hz, anomeric H), 5.33 (1H, br s, H-6 of aglycone); ¹³C-nmr data, see Table 1; *anal*., found C, 61.32, H, 8.10%, C₄₃H₆₈O₁₆ requires C, 61.44, H, 8.09; fabms m/z 839 (M-H)⁻.

Taiwanoside B [2].—Mp 156–158°; $[\alpha]D - 73.0°$ (c=1.0, CHCl₃); ir (KBr) ν max 3450, 3030, 2985, 2930, 1730, 1710, 1635, 1230, 1055, 1020 cm⁻¹; ¹H nmr (CDCl₃) δ 1.10 (3H, s, Me-19), 1.20, 1.21, 1.22, 1.23 (3H each, d, J=6.3 Hz, Me-6 of sugars), 1.40 (3H, s, Me-18), 1.96 (3H, s, AcO-12), 2.28 (3H, s, Me-21), 3.24 (1H, dd, J=9.4 and 2.7 Hz, H-4 of β-D-cymaropyranose), 3.28 (1H, dd, J=9.5 and 2.3 Hz, H-4 of β-D-digitoxopyranose), 3.37, 3.39, 3.40 (3H each, s, MeO-3 of sugar moiety), 3.57 (1H, dd, J=9.3 and 2.4 Hz, H-4 of α-L-cymaropyranose), 3.58 (1H, m, H-3 of aglycone), 3.85 (1H, br s, H-4 of α-L-

diginopyranose), 4.73 (1H, dd, J=10.2 and 2.1 Hz, anomeric H), 4.75 (1H, d, J=3.1 Hz, anomeric H), 4.90 (1H, dd, J=9.6 and 2.1 Hz, anomeric H), 5.26 (1H, d, J=3.0 Hz, anomeric H), 5.32 (1H, br s, H-6); ¹³C-nmr data, see Table 1; *anal*., found C, 61.02, H, 8.08, C₅₀H₈₀O₁₉ requires C, 60.97, H, 8.13; fabms m/z 983 (M-H)⁻.

Taiwanoside C **[3]**.—Mp 153–155°; $[\alpha]D - 55.0°$ (c=1.0, CHCl₃); ir (KBr) ν max 3440, 3010, 2940, 2900, 1725, 1700, 1630, 1220, 1080, 1060, 1000 cm⁻¹; ¹H nmr (CDCl₃) δ 1.09 (3H, s, Me-19), 1.18, 1.20, 1.20, 1.22 (3H each, d, J=6.3 Hz, Me-6 of sugars), 1.39 (3H, s, Me-18), 1.91 (3H, s, AcO-12), 2.21 (3H, s, Me-21), 3.36, 3.37, 3.39, 3.43 (3H each, s, MeO-3 of sugar moiety), 3.25 (1H, dd, J=9.6 and 3.0 Hz, H-4 of β-D-cymaropyranose), 3.55 (1H, dd, J=10.2 and 2.7 Hz, H-4 of α -L-cymaropyranose), 3.80 (1H, m, H-3 of aglycone), 4.73 (1H, dd, J=9.6 and 2.1 Hz, anomeric H), 4.75 (1H, d, J=3.0 Hz, anomeric H), 4.79 (1H, dd, J=10.5 and 2.1 Hz, anomeric H), 4.95 (1H, d, J=3.0 Hz, anomeric H), 5.32 (1H, br s, H-6); ¹³C-nmr data, see Table 1; *anal*., found C, 61.44, H, 8.16, C₅₁H₈₂O₁₉ requires C, 61.32, H, 8.22; fabms m/z 997 (M-H)⁻.

Taiwanoside D [4].—Mp 165–167°; [α]D –25.0° (c=1.0, CHCl₃); ir (KBr) ν max 3450, 3020, 2940, 2910, 1710, 1635, 1490, 1450, 1260, 1200, 1080, 1060, 1000 cm⁻¹; uv λ max (MeOH) (log ϵ) 278 (2.89), 223 (3.81), 217 (3.84) nm; ¹H nmr (CDCl₃) δ 1.12 (3H, s, Me-19), 1.21, 1.21, 1.22, 1.23 (3H each, d, J=6.6 Hz, Me-6 of sugars), 1.45 (3H, s, Me-18), 2.18 (3H, s, Me-21), 3.25 (1H, dd, J=9.6 and 2.4 Hz, H-4 of β-D-cymaropyranose), 3.27 (1H, dd, J=9.5 and 2.7 Hz, H-4 of β-D-digitoxopyranose), 3.37, 3.40, 3.44 (3H each, s, MeO-3 of sugar moiety), 3.50 (1H, dd, J=9.3 and 2.4 Hz, α-L-cymaropyranose), 3.51 (1H, m, H-3 of aglycone), 3.82 (1H, br s, H-4 of α-L-diginopyranose), 4.75 (1H, dd, J=10.5 and 2.1 Hz, anomeric H), 4.77 (1H, d, J=3.1 Hz, anomeric H), 4.92 (1H, dd, J=10.5 and 3.0 Hz, anomeric H), 5.03 (1H, d, J=3.0 Hz, anomeric H), 5.34 (1H, br s, H-6), 6.28 (1H, d, J=15.9 Hz, H-8'), 7.36 (3H, m, H-3', H-4', and H-5'), 7.49 (2H, m, H-2', H-6'), 7.59 (1H, d, J=15.9 Hz, H-7'); ¹³C-nmr data, see Table 1; *anal.*, found C, 63.95, H, 7.80, C₅₇H₈₄O₁₉ requires C, 63.81, H, 7.84; fabms m/z 1071 (M−H)⁻.

Taiwanoside E [5].—Mp 156–157°; $[\alpha]D - 68.0°$ (c=1.0, CHCl₃); ir (KBr) ν max 3400, 3030, 2940, 2900, 1700, 1630, 1430, 1370, 1080, 1050, 1000 cm⁻¹; ¹H nmr (CDCl₃) δ 1.15 (3H, s, Me-19), 1.17, 1.19, 1.21, 1.22 (3H each, d, J=6.3 Hz, Me-6 of sugars), 1.20 (3H, s, Me-18), 2.26 (3H, s, Me-21), 3.33, 3.35, 3.40 (3H each, s, MeO-3 of sugar moiety), 4.70 (1H, dd J=9.8 and 2.1 Hz, anomeric H), 4.71 (1H, d, J=3.0 Hz, anomeric H), 4.86 (1H, dd J=9.3 and 2.1 Hz, anomeric H), 4.98 (1H, d, J=3.0 Hz, anomeric H), 5.28 (1H, br s, H-6); ¹³C-nmr data, see Table 1; *anal*., found C, 61.35, H, 8.21%, C₄₈H₇₈O₁₈ requires C, 61.15, H, 8.28%, fabms *m*/2 941 (M-H)⁻.

ACIDIC HYDROLYSIS OF TAIWANOSIDE A [1].—Compound 1 (10 mg) was heated in methanolic 2% H_2SO_4 (5 ml) at 50° for 1 h, then H_2O (5 ml) was added and the whole mixture was concentrated to about 3 ml, and neutralized with saturated Ba(OH)₂. The precipitates were filtered off and the filtrate was evaporated to dryness. The residue was purified over Si gel using 5% MeOH/CHCl₃ to afford metaplexigenin [10] (4 mg) [colorless needles, mp 273–276°; eims m/z 422 (M⁺)] and a sugar mixture (4 mg).

ACETYLATION OF 1.—A solution of taiwanoside A [1] (5 mg) in pyridine (0.5 ml) and Ac₂O (0.5 ml) was left at room temperature for 1 day. The reaction mixture was treated in the usual manner and purified by Si gel cc (CHCl₃) to yield a triacetate [1a] (5 mg) (amorphous); ir (KBr) ν max 3450, 3020, 2980, 2960, 1740, 1710, 1630, 1240, 1055, 1020 cm⁻¹; ¹H nmr (CDCl₃) δ 1.10, 1.40, 1.93, 1.96, 1.98 (3H each, s), 1.14, 1.15, 1.70 (3H each, d, J=6.6 Hz), 2.22 (3H, s), 3.40 (6H, s), 3.83 (1H, m), 4.55 (1H, dd, J=9.9 and 3.0 Hz), 4.56 (1H, dd, J=9.8 and 3.0 Hz), 4.70 (1H, dd, J=9.3 and 2.3 Hz), 4.97 (1H, d, J=3.0 Hz), 5.29 (1H, ddd, J=3.1, 2.8 and 2.8 Hz), 5.30 (1H, br s).

ALKALINE HYDROLYSIS OF **3**.—Taiwanoside C [**3**] (10 mg) was dissolved in 5% methanolic NaOH (2 ml) at room temperature overnight. After addition of H_2O (2 ml), the MeOH was removed under reduced pressure. The aqueous concentrate was extracted with EtOAc, the EtOAc extract was dried over Na₂SO₄, filtered and evaporated to dryness, and afforded a product that was identical to wilfoside M1N [**8**] (12) (4 mg) [mp 151–153°].

ACIDIC HYDROLYSIS OF 4.—Compound 4 (10 mg) was heated in methanolic 2% H₂SO₄ (5 ml) at 50° for 1 h, then worked up as above, yielding kidjoranine [**11**] (26,27) (4 mg) (mp 150–152°) and a sugar mixture (4 mg).

BASIC HYDROLYSIS OF 4.—Taiwanoside D [4] (20 mg) and NaOH (100 mg) were heated in 4 ml of a 50% aqueous MeOH solution for 6 h. After addition of H_2O (25 ml), the solution was extracted with EtOAc to give organic and aqueous layers. The organic layer yielded compound 5 (15 mg) and the aqueous layer afforded cinnamic acid (2 mg) after purification.

ACIDIC HYDROLYSIS OF 5.—Compound 5 (10 mg) was heated in methanolic 2% H₂SO₄ (5 ml) at 50° for 1 h, then worked up as above to give deacylmetaplexigenin [12] (26,28) (3 mg) (mp 218–222°).

ACKNOWLEDGMENTS

We thank the National Science Council of the Republic of China for financial support.

LITERATURE CITED

- 1. Z.X. Zhang, J. Zhou, K. Hayashi, and H. Mitsuhashi, Chem. Pharm. Bull., 33, 1507 (1985).
- 2. Z.X. Zhang, J. Zhou, K. Hayashi, and H. Mitsuhashi, Chem. Pharm. Bull., 33, 4188 (1985).
- 3. Z.X. Zhang, J. Zhou, K. Hayashi, and K. Kaneko, Phytochemistry, 27, 2935 (1988).
- 4. T. Nakagawa, K. Hayashi, and H. Mitsuhashi, Chem. Pharm. Bull., 31, 870 (1983).
- 5. T. Nakagawa, K. Hayashi, and H. Mitsuhashi, Chem. Pharm. Bull., 31, 879 (1983).
- 6. T. Nakagawa, K. Hayashi, K. Wada, and H. Mitsuhashi, Tetrahedron, 39, 607 (1983).
- 7. T. Nakagawa, K. Hayashi, and H. Mitsuhashi, Chem. Pharm. Bull., 31, 2244 (1983).
- 8. K. Sugama, K. Hayashi, H. Mitsuhashi, and K. Kaneko, Chem. Pharm. Bull., 34, 4500 (1986).
- 9. K. Sugama and K. Hayashi, Phytochemistry, 27, 3984 (1988).
- K. Hayashi, K. Wada, H. Mitsuhashi, H. Bando, M. Takase, S. Terada, Y. Koide, T. Aiba, T. Narita, and D.I. Mizuno, *Chem. Pharm. Bull.*, 28, 1954 (1980).
- 11. S. Tsukamoto, K. Hayashi, and H. Mitsuhashi, Tetrahedron, 41, 927 (1985).
- 12. S. Tsukamoto, K. Hayashi, and H. Mitszhashi, Chem. Pharm. Bull., 33, 2294 (1985).
- 13. K. Hayashi and H. Mitsuhashi, Chem. Pharm. Bull., 23, 139 (1975).
- S. Tsukamoto, K. Hayashi, H. Mitsuhashi, F.O. Snyckers, and T.G. Fourie, *Chem. Pharm. Bull.*, 33, 4807 (1985).
- S. Tsukamoto, K. Hayashi, K. Kaneko, H. Mitsuhashi, F.O. Snyckers, and T.G. Fourie, *Chem. Pharm. Bull.*, 34, 1337 (1986).
- 16. T. Yamagi, K. Hayashi, and H. Mitsuhashi, Chem. Pharm. Bull., 20, 2289 (1972).
- 17. K. Wada, K. Hayashi, H. Mitsuhashi, and H. Bando, Chem. Pharm. Bull., 27, 2252 (1979).
- 18. K. Wada, K. Hayashi, H. Mitsuhashi, and H. Bando, Chem. Pharm. Bull., 30, 3500 (1982).
- 19. S. Tsukamoto, K. Hayashi, and K. Kaneko, J. Chem. Soc., Perkin Trans. I, 2621 (1988).
- 20. Z.S. Chen, J.S. Lai, and Y.H. Kuo, J. Chin. Chem. Soc., 38, 393 (1991).
- 21. J. VonEuw and T. Reichstein, Helv. Chim. Acta, 31, 883 (1948).
- 22. R. Kasai, M. Suzuo, J. Asakawa, and O. Tanaka, Tetrahedron Lett., 175 (1977).
- 23. S. Seo, Y. Tomita, K. Tori, and Y. Yoshimura, J. Am. Chem. Soc., 100, 3331 (1978).
- 24. H. Mitshuhasi and T. Nomura, Chem. Pharm. Bull., 13, 274 (1965).
- 25. H. Mitshuhasi and T. Nomura, Chem. Pharm. Bull., 11, 1333 (1963).
- 26. S.S. Gong, C.D. Liu, S.L. Liu, Y.R. Du, W. Kang, and X.Q. Dong, Acta Pharm. Sin., 23, 276 (1988).
- 27. T. Sasaki, K. Hayashi, and H. Mitsuhashi, Chem. Pharm. Bull., 20, 628 (1972).
- 28. H. Mitsuhasi, K. Sakurai, T. Nomura, and N. Kawahara, Chem. Pharm. Bull., 14, 712 (1966).

Received 2 November 1994